

Page 1 of 16

Technical Whitepaper

FinBook Pte. Ltd. (token@finbook.co)

Version 0.3.0

25 Jul 2018

1. Introduction

In this paper, we lay out the detail design and implementation for the DUO structure

described in our Economic Whitepaper and Academic Whitepaper.

2. Design and Structure

2.1 System and Platforms

The system consists of three major parts: smart contract that runs on Ethereum (“ETH”)

blockchain, price feed, and event triggers that run on cloud servers and web user interface.

Four smart contracts are deployed onto ETH blockchain, namely, DUO Network Token

contract, Token A contract, Token B contract, and Beethoven contract. The first three contracts

are standard ERC20 tokens, whereas the last one is the main contract that implements the DUO

structure. Users can interact with these contracts directly or through our web app.

Three sets of price feed are setup independently on AWS, Azure, and GCP, running the same

price fetching and aggregation algorithm. Beethoven then finds the consensus price from the

three sources. Users can review the data sent to Beethoven by checking the blockchain directly

or through our web app.

Triggers subscribe to the blockchain for events emitted by Beethoven, specifically

StartPreReset and StartReset events. Once these events are emitted, the triggers will send

new transaction to the blockchain to invoke relevant functions to progress the state transition.

2.2 State Transition

2.2.1 States

Inception: genesis state. No transit back to this state once it transits out. This state can

only transit to Trading state.

Trading: normal state. the system is expected to be in this state most of the time. All

functionality works in this state. This state can only transit to PreReset state.

mailto:token@finbook.co
https://duo.network/duo_economic_white_paper.pdf
https://duo.network/duo_academic_white_paper.pdf

Page 2 of 16

PreReset: waiting state for the network to sync transactions before reset is started. Most

of the smart contract functionalities are disabled in this state and effectively lock the

transfer of A and B tokens. This state can transit to one of the three reset states below.

UpwardReset: upward reset is carried out in this state. This state can only transit to

Trading state.

DownwardReset: downward reset is carried out in this state. This state can only transit

to Trading state.

PeriodicReset: periodic reset is carried out in this state. This state can only transit to

Trading state.

2.2.2 Transition

Below is the state transition diagram. When contract is in Trading state, it will receive

ETH/USD price fix from a Price Feed process. Contract will transit to PreReset state

when Net Asset Value (“NAV”) of A or B hits predefined limits. PreReset trigger

process will trigger PreReset state into one of the three reset states, UpwardReset,

PeriodicReset, or DownwardReset. Reset trigger process will trigger contract transit

from reset state to Trading.

2.3 Price Feed

2.3.1 Trade Fetch

Subscribe for trade information from exchange API of ETH/USD in Bitfinex, Kraken,

CoinBase/GDAX, and Gemini. Persist id, price, volume and timestamp into database.

2.3.2 Price Aggregation

Traded prices are aggregated based on following algorithm:

1) For each exchange:

Page 3 of 16

a. split 1 hour into 12 intervals of 5 minutes long

b. for the last 5-minute interval in the hour, take the volume based median

price as the fix for this hour

c. if there is no trade in this 5-minute interval, use the previous interval that

has trade

d. if there is no trade in the past hour, omit this exchange for overall fixing

2) For overall fixing:

a. average all valid exchange fixing for the hour weighted by the total trade

volume of last 5 minutes, subject to weighting cap of 35% for 1st, 30%

for 2nd, 25% for 3rd, 20% for 4th and 15% for 5th.

b. if none of the exchanges have valid fixing, use previous fix

2.3.3 Price Commit

Three price commit process are running on different platforms (AWS, Azure and GCP)

to commit hourly ETH price to Beethoven. The purpose is to minimize the risk of the price

commit system being hacked by attackers. If two servers are taken over by attackers and the

third server still function as normal, it is still not possible for attackers to manipulate the price

feed.

Price commits within cool down period from last commit are rejected/ignored.

All commits from the same sender as the first price are rejected if they are within cool down

period from the first price.

The first price arrived is accepted immediately if the price is similar (5% difference) to the

previous accepted price. Otherwise, smart contract will wait for the second price.

When the second price arrives beyond the cool down period after first price, the second price

is accepted immediately if second sender is same as first sender, or first price is accepted if

second sender is not the same as first sender.

When the second price arrives within the cool down period after the first price and the second

sender is different from the first sender, contract will compare the price arriving time between

the two prices. First price is accepted if the second price arrives too late. If the second price’s

arriving time is within tolerance, it will further check the price difference. If the difference is

within tolerance, the first price is accepted. If not, contract will wait for the third price.

All commits from the first or second sender are rejected if they are within cool down period

from the first price.

When the third price arrives beyond the cool down period from the first price, it will further

check the price sender. If the price sender is different from previous senders, the second price

is accepted. If the price sender is same as any of the first two senders, the third price is accepted.

If the third price arrives within cool down period and sent by third sender, it will further check

the arriving time difference to the first price. If the difference is too big, the first price will be

accepted. If the difference is within tolerance, the median of the three prices are accepted.

Below is a graph showing the price selection logic.

Page 4 of 16

Page 5 of 16

2.4 Resets

In Academic Whitepaper, users will receive ETH after any of the three resets as payout. It is

assumed that users prefer to stay within the system, and thus convert ETH back to Token A and

B, incurring a conversion fee. In our implementation, Beethoven just pays out the

corresponding Token A and B to users after each reset, WITHOUT charging users any fee. The

conversion logic is slightly different for the three resets to provide convenience for users.

Upward Reset: Token A holder will receive all the payout in Token A, while Token B holder

will receive more Token B than Token A (instead of the 1:1 ratio). Effectively Token B holder

exchanges part of their new Token A with Token A holder for their new Token B. Overall

amount ratio of token A and B in the system remains 1:1 (Note that in current setting, i.e. A: B

as 1:1, the new Token A from Token B holders can always cover the new Token B from Token

A holders, after an upward reset). In this way, Token A holders can remain purely holding

Token A after upward reset and do not require any rebalancing transactions.

Downward Reset and Periodic Reset: both Token A and Token B holder receives new Token

A and B in 1:1 ratio, same as standard creation, but without conversion fee.

2.5 User Address and Balance Threshold

In theory, every user address that has any Token A or B (or both) balance should be processed

in a Reset event. Thus, for every Creation and Transfer, the user address is recorded in an array

to be used in the Reset process. When Reset happens, Beethoven loops through this array and

adjusts Token A and Token B balance of each address. It costs about 20,000 gas to process one

user address and given the current gas limit of 8 million gas for one message, we can roughly

process 400 addresses in one transaction.

There can be a lot of addresses with negligible balances of Token A and B for various reasons,

such as redemption or transfer to other accounts. Due to concerns of temporal and economical

inefficiency, we have set a minimum balance of Token A and B for an address to be qualified

for Reset processing. The threshold is set as 0.01 for both Token A and Token B, for the

following reasons:

1) 0.01 Token A or Token B is expected to be worth roughly 0.01 USD, which is lower

than the gas consumption of any ERC-20 operation (20,000 gas at 2 GWei with ETH

at 500 USD equals 0.02 USD). We can safely assume such accounts have been

abandoned for all practical purposes;

2) if someone created a huge number of addresses with Token B balance below 0.01 to

intentionally avoid Reset event, it would not be profitable because gas consumption to

create such addresses would cost more than these Token B’s worth;

3) even if the addresses described in 2) are created and escape the balance adjustment of

a downward reset, it is not economical for the address owner to withdraw these tokens,

because the gas consumption would cost more than the worth of these Token B, even

after downward reset.

Despite of the mathematical imperfection in the total supply of Token A and B, we skip these

addresses so Beethoven can process Reset event in a much more practical and efficient manner

without any real impact to the Token economy. Beethoven checks if both Token A and B

balances of an address are below the threshold in every Redemption or Transfer. If so, the

address is removed from the array of user addresses to be processed in a Reset event.

https://duo.network/duo_academic_white_paper.pdf

Page 6 of 16

2.6 Administration Roles

There are six admin roles in our contract admin system. They are price feed 1 (pf1), price feed

2 (pf2), price feed 3 (pf3), fee collector (fc), operator (opt) and pool manager (pm). Price feed

role can send price information to Beethoven. There are 3 addresses in this role at any given

time, one for each cloud platform the service runs. fc is the one that collects all transaction fees

incurred during creation and redemption. Operator in this role can update certain parameters in

Beethoven. To safeguard Beethoven, we designed the admin system in a way that no single

account can alter the contract and benefit from it. The admin system is described as below.

A list of ETH addresses in Beethoven can be assigned to different administration roles. There

are minimum of 3 addresses in the pool at any given time. Any address can only assume one

role at a given time. Once an address is assigned a role, it is removed from the address pool and

marked as used so that it cannot be added back to the pool again.

In contract inception, 6 candidate accounts and one pool manager account are created. Pool

manager can add two new account candidates into the pool. Prior to addition, the pool manager

account is set randomly from the account pool. At the same time, new pool manager is removed

from the pool. Pool manager is not allowed to add used accounts. The two accounts added must

be different. Pool manager can also remove one account each time from the pool. Similarly, the

pool manager is replaced randomly before candidate removal.

Any account in the pool can be an assignor. To assign roles, an assignee will be randomly select

from the pool except the assignor itself. Therefore, even when one assignor’s private key is

exposed, the private key owner cannot benefit from assigning other accounts. Only when two

accounts’ private keys are owned by one person, there could be a possibility that the new role

is assigned to one of that owner’s addresses. However, since the assigning process is random,

the probability is considerably low. This probability is further reduced if the pool size is large.

After new role assignment, both the assignor address and the new role address are removed

from the pool list.

Similar to price commit process, there is also an admin cool down window. The cool down

window is set as one day. It means any admin operation can only be executed one day after last

admin operation.

Page 7 of 16

2.7 Security Analysis

2.7.1 Smart Contract

SafeMath: overflow and underflow are checked throughout the contract for all

numerical calculations except for looping indices. Order of math operations are also

checked to ensure intermediate results do not exceed the limit of 256-bit integer.

Function Restriction: all important functions in Beethoven are restricted by the caller

and the state Beethoven is in. This prevents unwanted function invocations.

Events: every time a system parameter or state is changed, a related event is emitted so

that everyone on the blockchain can monitor the change made to Beethoven.

2.7.2 Price Feed

Aggregation: timeliness and relevance take precedence over smoothness and

manipulation resistance. Unlike futures settlement price in financial markets, this price

feed does not always trigger a reset event. Futures market have bigger size than the

underlying due to leverage effect, encouraging participants to manipulate the

underlying market to impact future contracts settlement. On the contrary, the combined

Token A and Token B could never be bigger than the underlying ETH market.

Therefore, there is no incentive to manipulate the underlying ETH market to impact

reset prices.

Redundancy: three different cloud server providers are used.

Consensus: rigorous algorithm to find the consensus price fixing from three price feeds.

2.7.3 Admin System Random Number Generation

In our admin system, after each admin operation, new admin account needs to be set

randomly. However, the Ethereum EVM does not provide opcode for random number

generation. The naive way of generating random number is using block.timestamp.

However, block.timestamp can be arbitrarily altered by miner. A safer way is to use

previous block’s block hash because previous hash cannot be altered by current block

miner. However, previous block hash is publicly known although the block interval is

only 15 seconds. We need something that keeps varying and cannot be altered. A

smarter idea is to use our user list. The user list length keeps changing and the user

address cannot be changed arbitrarily. We combine block hash (from blockchain) and

user list (from our product) to generate a random number.

The actual implementation is as following,

1) Take previous block’s block hash and convert the hash into a number, a

2) If user list length, n is less than or equal to 255, a as the random number

3) If n is larger than 255, calculate b = a % n, and convert the b-th user’s address,

addr(b) to number as the random number generated

Page 8 of 16

3. Smart Contracts

3.1 DUO Network Token Contract

Standard ERC20 Token with 18 decimal places.

3.1.1 Functions

balanceOf: returns the balance of token for a given address

allowance: returns the allowance of token for a given spender authorized by an owner

transfer: transfer token to a given address

transferFrom: transfer authorized token to a given address

approve: authorize a given address to transfer token

totalSupply: returns the total number of token

3.1.2 Events

Transfer: emit after a transfer is done

Approval: emit after an allowance is approved

3.2 Token A Contract

ERC20 Token wrapper with 18 decimal places. The ERC20 functions listed in 3.1.1 are

redirected to Beethoven, which implements the actual logic for Token A. Events listed

in 3.1.2 works as standard.

3.3 Token B Contract

ERC20 Token wrapper with 18 decimal places. The ERC20 functions listed from 3.1.1

are redirected to Beethoven, which implements the actual logic for Token B. Events

listed in 3.1.2 works as standard.

3.4 Beethoven (Custodian) Contract

Main contract implementing the DUO structure.

3.4.1 Price Feed only functions

startContract: start the contract by giving it an initial price and move state to Trading.

Callable only in Inception state. Emit StartTrading event and AcceptPrice event.

commitPrice: accept price from external price feed and find consensus price among

them. Callable only in Trading state. Emit CommitPrice event if a price is staged but

not accepted. Emit AcceptPrice event if a price is accepted. Also checks if reset is

required given the newly accepted price and emit StartPreReset event in such cases.

Page 9 of 16

3.4.2 General user functions

create: create Token A and B by sending ETH to the contract and emit Create event

and TotalSupply event. Callable only in Trading state. User can choose to pay

conversion fee in ETH or DUO Network token.

redeem: merge Token A and B back to ETH and withdraw ETH to caller’s address.

Emit Redeem event and TotalSupply event. Callable only in Trading state. User can

choose to pay conversion fee in ETH or DUO Network token.

calculateNav: calculate NAV for A and B with given prices based on current system

parameters.

startPreReset: prepare the contract for reset. If the waiting period has reached

predefined level, move the system to one of the three reset states and emit StartReset

event and TotalSupply event in such cases. Otherwise a new StartPreReset event

would be emitted to continue the wait. Callable only in PreReset state.

startReset: execute the reset for all users based on the gas available for this transaction.

If gas is not enough for remaining users, StartReset event is emitted so that the next

transaction can continue the reset process. If all users are processed, StartTrading

event is emitted. Callable only in UpwardReset, DownwardReset or PeriodicReset

state.

getSystemAddresses: return the contract address of token A and B and the current

address for the 6 roles: operator, fee collector, price feed 1, price feed 2, price feed 3

and pool manager.

getSystemStates: return the current value for a list of system states or parameters.

Please refer to the contract for the list.

getSystemPrices: return the value, timestamp and address of the two staging prices,

last reset price and latest accepted price.

3.4.3 Token A & B functions

balanceOf: returns the balance of token A or B for a given address.

allowance: returns the allowance of token A or B for a given spender authorized by an

owner.

transfer: transfer token A or B to a given address. Callable only in Trading state.

transferFrom: transfer authorized token A or B to a given address. Callable only in

Trading state.

approve: authorize a given address to transfer token A or B.

totalSupply: returns the total number of token A or B.

3.4.4 Admin only functions

collectFee: withdraw ETH fee from the contract and emit CollectFee event. Callable

only by fee collector in Trading State. Fees paid in DUO Network tokens are not

Page 10 of 16

collectable and will remain in the contract address forever. These DUO Network tokens

are effectively burnt as there is no way to transfer them out of the contract address.

setValue: set system parameter value based on a predefined index and emit SetValue

event. Please refer to the contract for the list. Callable only by operator during update

window.

addAddress: add two new addresses into the pool and assign a new address to be the

pool manager. Emit AddAddress event. Callable only by pool manager during update

window.

removeAddress: remove one address from the pool and assign a new address to be the

pool manager. Emit RemoveAddress event. Callable only by pool manager during

update window.

updateAddress: assign a new address to be the target role and remove the calling

address from the pool. Emit UpdateAddress event. Callable only by addresses in the

address pool during update window.

3.4.5 State Events

StartTrading: emit after state is changed to Trading.

StartPreReset: emit after state is changed to PreReset or during the waiting period

before the state is changed to an actual reset state.

StartReset: emit after state is changed to UpwardReset, DownwardReset, or

PeriodicReset or while resets are being processed before the state is changed to

Trading.

CommitPrice: emit after a price is staged.

AcceptPrice: emit after a staged price is accepted.

Create: emit after a creation is performed.

Redeem: emit after a redemption is performed.

TotalSupply: emit after total supply for token A and B is changed

3.4.6 Admin Events

AddAddress: emit after address are added to the pool.

UpdateAddress: emit after an address from the pool is allocated to a role.

RemoveAddress: emit after an address is removed from the pool.

SetValue: emit after a system parameter is updated.

CollectFee: emit after ETH received for fee is collected.

3.4.7 Token Events

Transfer: emit after a transfer for either A or B is done

Approval: emit after an allowance for either A or B is approved

Page 11 of 16

3.4.8 Gas Consumption

Method Recommended gas

first time to create 160,000

create 90,000

redeem 90,000

approve DUO 50,000

transfer A/B 100,000

transfer A/B to new user 120,000

transfer DUO 60,000

Page 12 of 16

4. Web User Interface

Page 13 of 16

4.1 Historical Prices and Fixing

4.2 Current Price

4.3 Current Balance

Page 14 of 16

4.3 System Information and Status

4.4 Creation, Redemption and ERC20 Operations

Page 15 of 16

4.4 Recent Conversion History

Page 16 of 16

4.5 System Process Status

